*** Welcome to piglix ***

Radar sensor


Radar engineering details are technical details pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Applications of radar include Autonomous cruise control system, autonomous landing guidance, radar altimeter, air traffic management, early-warning radar, fire-control radar, forward warning collision sensing, ground penetrating radar, surveillance, and weather forecasting.

The angle of a target is detected by scanning the field of view with a highly directive beam. This is done electronically, with a phased array antenna, or mechanically by rotating a physical antenna. The emitter and the receiver can be in the same place, as with the monostatic radars, or be separated as in the bistatic radars. Finally, the radar wave emitted can be continuous or pulsed. The choice of the architecture depends on the sensors to be used.

An electronically scanned array (ESA), or a phased array, offers advantages over mechanically scanned antennas such as instantaneous beam scanning, the availability of multiple concurrent agile beams, and concurrently operating radar modes. Figures of merit of an ESA are the bandwidth, the effective isotropically radiated power (EIRP) and the GR/T quotient, the field of view. EIRP is the product of the transmit gain, GT, and the transmit power, PT. GR/T is the quotient of the receive gain and the antenna noise temperature. A high EIRP and GR/T are a prerequisite for long-range detection. Design choices are:


...
Wikipedia

...