*** Welcome to piglix ***

Quotient stack


In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack.

The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks or toric stacks.

An orbifold is an example of a quotient stack.

A quotient stack is defined as follows. Let G be an affine smooth group scheme over a scheme S and X a S-scheme on which G acts. Let be the category over the category of S-schemes: an object over T is a principal G-bundle PT together with equivariant map PX; an arrow from PT to P'T' is a bundle map (i.e., forms a cartesian diagram) that is compatible with the equivariant maps PX and P'X.

Suppose the quotient exists as, say, an algebraic space (for example, by the Keel–Mori theorem). The canonical map


...
Wikipedia

...