*** Welcome to piglix ***

Orbifold


This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976–77. An orbifold is something with many folds; unfortunately, the word "manifold" already has a different definition. I tried "foldamani", which was quickly displaced by the suggestion of "manifolded". After two months of patiently saying "no, not a manifold, a manifoldead," we held a vote, and "orbifold" won.

In the mathematical disciplines of topology, geometry, and geometric group theory, an orbifold (for "orbit-manifold") is a generalization of a manifold. It is a topological space (called the underlying space) with an orbifold structure (see below).

The underlying space locally looks like the quotient space of a Euclidean space under the linear action of a finite group. Definitions of orbifold have been given several times: by Satake in the context of automorphic forms in the 1950s under the name V-manifold; by Thurston in the context of the geometry of 3-manifolds in the 1970s when he coined the name orbifold, after a vote by his students; and by Haefliger in the 1980s in the context of Gromov's programme on CAT(k) spaces under the name orbihedron. The definition of Thurston will be described here: it is the most widely used and is applicable in all cases.

Mathematically, orbifolds arose first as surfaces with singular points long before they were formally defined. One of the first classical examples arose in the theory of modular forms with the action of the modular group SL(2,Z) on the upper half-plane: a version of the Riemann–Roch theorem holds after the quotient is compactified by the addition of two orbifold cusp points. In 3-manifold theory, the theory of Seifert fiber spaces, initiated by Seifert, can be phrased in terms of 2-dimensional orbifolds. In geometric group theory, post-Gromov, discrete groups have been studied in terms of the local curvature properties of orbihedra and their covering spaces.


...
Wikipedia

...