*** Welcome to piglix ***

Quantum pseudo-telepathy


Quantum pseudo-telepathy is a phenomenon in quantum game theory resulting in anomalously high success rates in coordination games between separated players. These high success rates would require communication between the players in a purely classical (non-quantum) world; however, the game is set up such that during the game, communication is physically impossible. This means that for quantum pseudo-telepathy to occur, prior to the game the participants need to share a physical system in an entangled quantum state, and during the game have to execute measurements on this entangled state as part of their game strategy. Games in which the application of such a quantum strategy leads to pseudo-telepathy are also referred to as quantum non-locality games.

In their 1999 paper,Gilles Brassard, Richard Cleve and Alain Tapp demonstrated that winning quantum strategies can exist in simple games for which in the absence of quantum entanglement a winning strategy can result only if the participants were allowed to communicate. The term quantum pseudo-telepathy was later introduced for this phenomenon. The prefix 'pseudo' is appropriate, as the quantum non-locality effects that are at the heart of the phenomenon do not allow any transfer of information, but rather eliminate the need to exchange information between the players for achieving a mutual win in the game.

The phenomenon of quantum pseudo-telepathy is mostly used as a powerful and explicit thought experiment of the non-local characteristics of quantum mechanics. Yet, the effect is real and subject to experimental verification, as demonstrated by the experimental confirmation of the violation of the Bell inequalities.

An example of quantum pseudo-telepathy can be observed in the following two-player coordination game in which, in each round, one participant fills one row and the other fills one column of a 3x3 table with plus and minus signs.

The two players Alice and Bob are separated so that no communication between them is possible. In each round of the game, Alice is told which row is selected for her to fill in, and Bob is told which column is selected for him. Alice is not told which column Bob must fill in, and Bob is not told which row Alice must fill in. One may assume that the selection is done by chance or by a hostile party.


...
Wikipedia

...