*** Welcome to piglix ***

Bell test experiments


Bell test experiments or Bell's inequality experiments are designed to demonstrate the real world existence of certain theoretical consequences of the phenomenon of entanglement in quantum mechanics which could not occur according to a classical picture of the world, characterised by the notion of local realism. Under local realism, correlations between outcomes of different measurements performed on separated physical systems have to satisfy certain constraints, called Bell inequalities. John Bell derived the first inequality of this kind in his paper "On the Einstein-Podolsky-Rosen Paradox".Bell's Theorem states that the predictions of quantum mechanics, concerning correlations, being inconsistent with Bell's inequality, cannot be reproduced by any local hidden variable theory. However, this doesn't disprove hidden variable theories that are nonlocal such as Bohmian mechanics.

The term "Bell inequality" can mean any one of a number of inequalities satisfied by local hidden variables theories; in practice, in present-day experiments, most often the CHSH; earlier the CH74 inequality. All these inequalities, like the original inequality of Bell, by assuming local realism, place restrictions on the statistical results of experiments on sets of particles that have taken part in an interaction and then separated. A Bell test experiment is one designed to test whether or not the real world satisfies local realism.

In practice most actual experiments have used light, assumed to be emitted in the form of particle-like photons (produced by atomic cascade or spontaneous parametric down conversion), rather than the atoms that Bell originally had in mind. The property of interest is, in the best known experiments, the polarisation direction, though other properties can be used. Such experiments fall into two classes, depending on whether the analysers used have one or two output channels.


...
Wikipedia

...