Purinergic receptors, also known as purinoceptors, are a family of plasma membrane molecules that are found in almost all mammalian tissues. Within the field of purinergic signalling, these receptors have been implicated in learning and memory, locomotor and feeding behavior, and sleep. More specifically, they are involved in several cellular functions, including proliferation and migration of neural stem cells, vascular reactivity, apoptosis and cytokine secretion. These functions have not been well characterized and the effect of the extracellular microenvironment on their function is also poorly understood.
The term purinergic receptor was originally introduced to illustrate specific classes of membrane receptors that mediate relaxation of gut smooth muscle as a response to the release of ATP (P2 receptors) or adenosine (P1 receptors). P2 receptors have further been divided into five subclasses: P2X, P2Y, P2Z, P2U, and P2T. To distinguish P2 receptors further, the subclasses have been divided into families of metabotropic (P2Y, P2U, and P2T) and ionotropic receptors (P2X and P2Z).
In 2014, the first purinergic receptor in plants, DORN1, was discovered.
There are three known distinct classes of purinergic receptors, known as P1, P2X, and P2Y receptors.
P2X receptors are ligand-gated ion channels, whereas the P1 and P2Y receptors are G protein-coupled receptors. These ligand-gated ion channels are nonselective cation channels responsible for mediating excitatory postsynaptic responses, similar to nicotinic and ionotropic glutamate receptors. P2X receptors are distinct from the rest of the widely known ligand-gated ion channels, as the genetic encoding of these particular channels indicates the presence of only two transmembrane domains within the channels. These receptors are greatly distributed in neurons and glial cells throughout the central and peripheral nervous systems. P2X receptors mediate a large variety of responses including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, macrophage activation, and apoptosis. Moreover, these receptors have been implicated in integrating functional activity between neurons, glial, and vascular cells in the central nervous system, thereby mediating the effects of neural activity during development, neurodegeneration, inflammation, and cancer.