*** Welcome to piglix ***

Propellane


In organic chemistry, propellane is any member of a class of polycyclic hydrocarbons, whose carbon skeleton consists of three rings of carbon atoms sharing a common carbon–carbon covalent bond. The name derives from a supposed resemblance of the molecule to a propeller: namely, the rings would be the propeller's blades, and the shared C–C bond would be its axis. The concept was introduced in 1966 by D. Ginsburg

Propellanes with small cycles are highly strained and unstable, and are easily turned into polymers with interesting structures, such as staffanes. Partly for these reasons, they have been the object of much research.

In the literature, the bond shared by the three cycles is usually called the "bridge"; the shared carbon atoms are then the "bridgeheads". The notation [x.y.z]propellane means the member of the family whose rings have x, y, and z carbons, not counting the two bridgeheads; or x + 2, y + 2, and z + 2 carbons, counting them. The chemical formula is therefore C2+x+y+zH2(x+y+z). The minimum value for x, y, and z is 1, meaning a 3-carbon ring.

There is no structural ordering between the rings, so, for example, [1.3.2]propellane is the same substance as [3.2.1]propellane. Therefore, it is customary to sort the indices in decreasing order, x ≥ y ≥ z.

In the propellanes with small cycles, such as [1.1.1]propellane or [2.2.2]propellane, the two carbons at the ends of the axial bond will be highly strained, and their bonds may even assume an inverted tetrahedral geometry.

The resulting steric strain causes such compounds to be unstable and highly reactive. The axial C-C bond is easily broken (even spontaneously) to yield less-strained bicyclic or even monocyclic hydrocarbons.


...
Wikipedia

...