In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group
where GL(V, F) is the general linear group of invertible linear transformations of V over F and F∗ is the normal subgroup consisting of multiplications of vectors in V by nonzero elements of F (that is, scalar multiples of the identity; scalar transformations).
One way in which a projective representation can arise is by taking a linear group representation of G on V and applying the quotient map
which is the quotient by the subgroup F∗ of scalar transformations (diagonal matrices with all diagonal entries equal). The interest for algebra is in the process in the other direction: given a projective representation, try to 'lift' it to a conventional linear representation.
In general, given a projective representation ρ: G → PGL(V) it cannot be lifted to a linear representation G → GL(V), and the obstruction to this lifting can be understood via group homology, as described below. However, one can lift a projective representation of G to a linear representation of a different group C, which will be a central extension of G. To understand this, note that GL(V) → PGL(V) is a central extension of PGL, meaning that the kernel is central (in fact, is exactly the center of GL). One can pull back the projective representation ρ: G → PGL(V) along the quotient map, obtaining a linear representation σ: C → GL(V) and C will be a central extension of G because it is a pullback of a central extension. Thus projective representations of G can be understood in terms of linear representations of (certain) central extensions of G. Notably, for G a perfect group there is a single universal perfect central extension of G that can be used.