*** Welcome to piglix ***

Principle of optimality


A Bellman equation, named after its discoverer, Richard Bellman, also known as a dynamic programming equation, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the value of a decision problem at a certain point in time in terms of the payoff from some initial choices and the value of the remaining decision problem that results from those initial choices. This breaks a dynamic optimization problem into simpler subproblems, as Bellman's "Principle of Optimality" prescribes.

The Bellman equation was first applied to engineering control theory and to other topics in applied mathematics, and subsequently became an important tool in economic theory; though the basic concepts of dynamic programming are prefigured in John von Neumann and Oskar Morgenstern's Theory of Games and Economic Behavior and Abraham Wald's sequential analysis.

Almost any problem which can be solved using optimal control theory can also be solved by analyzing the appropriate Bellman equation. However, the term 'Bellman equation' usually refers to the dynamic programming equation associated with discrete-time optimization problems. In continuous-time optimization problems, the analogous equation is a partial differential equation which is usually called the Hamilton–Jacobi–Bellman equation.

To understand the Bellman equation, several underlying concepts must be understood. First, any optimization problem has some objective: minimizing travel time, minimizing cost, maximizing profits, maximizing utility, et cetera. The mathematical function that describes this objective is called the objective function.


...
Wikipedia

...