*** Welcome to piglix ***

Hamilton–Jacobi–Bellman equation


The Hamilton–Jacobi–Bellman (HJB) equation is a partial differential equation which is central to optimal control theory. The solution of the HJB equation is the value function which gives the minimum cost for a given dynamical system with an associated cost function.

When solved locally, the HJB is a necessary condition, but when solved over the whole of state space, the HJB equation is a necessary and sufficient condition for an optimum. The solution is open loop, but it also permits the solution of the closed loop problem. The HJB method can be generalized to systems as well.

Classical variational problems, for example the , can be solved using this method.

The equation is a result of the theory of dynamic programming which was pioneered in the 1950s by Richard Bellman and coworkers. The corresponding discrete-time equation is usually referred to as the Bellman equation. In continuous time, the result can be seen as an extension of earlier work in classical physics on the Hamilton–Jacobi equation by William Rowan Hamilton and Carl Gustav Jacob Jacobi.

Consider the following problem in deterministic optimal control over the time period :


...
Wikipedia

...