A power MOSFET is a specific type of metal oxide semiconductor field-effect transistor (MOSFET) designed to handle significant power levels.
Compared to the other power semiconductor devices, for example an insulated-gate bipolar transistor (IGBT) or a thyristor, its main advantages are high switching speed and good efficiency at low voltages. It shares with the IGBT an isolated gate that makes it easy to drive. They can be subject to low gain, sometimes to degree that the gate voltage needs to be higher than the voltage under control.
The design of power MOSFETs was made possible by the evolution of CMOS technology, developed for manufacturing integrated circuits in the late 1970s. The power MOSFET shares its operating principle with its low-power counterpart, the lateral MOSFET.
The power MOSFET is the most widely used low-voltage (that is, less than 200 V) switch. It can be found in most power supplies, DC to DC converters, and low voltage motor controllers.
Several structures had been explored at the beginning of the 1980s, when the first power MOSFETs were introduced. However, most of them have been abandoned (at least until recently) in favour of the Vertical Diffused MOS (VDMOS) structure (also called Double-Diffused MOS or simply DMOS).
The cross section of a VDMOS (see figure 1) shows the "verticality" of the device: it can be seen that the source electrode is placed over the drain, resulting in a current mainly vertical when the transistor is in the on-state. The "diffusion" in VDMOS refers to the manufacturing process: the P wells (see figure 1) are obtained by a diffusion process (actually a double diffusion process to get the P and N+ regions, hence the name double diffused).
Power MOSFETs have a different structure from the lateral MOSFET: as with most power devices, their structure is vertical and not planar. In a planar structure, the current and breakdown voltage ratings are both functions of the channel dimensions (respectively width and length of the channel), resulting in inefficient use of the "silicon estate". With a vertical structure, the voltage rating of the transistor is a function of the doping and thickness of the N epitaxial layer (see cross section), while the current rating is a function of the channel width. This makes it possible for the transistor to sustain both high blocking voltage and high current within a compact piece of silicon.