Polyketones are a family of high-performance thermoplastic polymers. The polar ketone groups in the polymer backbone of these materials gives rise to a strong attraction between polymer chains, which increases the material's melting point (255 °C for copolymer (carbon monoxide ethylene), 220 °C for terpolymer (carbon monoxide, ethylene, propylene). Trade names include Carilon, Karilon, Akrotek, and Schulaketon. Such materials also tend to resist solvents and have good mechanical properties. Unlike many other engineering plastics, aliphatic polyketones such as Shell Chemicals' Carilon are relatively easy to synthesize and can be derived from inexpensive monomers. Carilon is made with a palladium(II) catalyst from ethylene and carbon monoxide. A small fraction of the ethylene is generally replaced with propylene to reduce the melting point somewhat. Shell Chemical commercially launched Carilon thermoplastic polymer in the U.S.in 1996, but discontinued it in 2000.SRI International offers Carilon thermoplastic polymers. Hyosung announced that they would launch production in 2015
For a discussion of the silicon containing polymers originally thought to have analogous structures, see silicone polymers.
The ethylene-carbon monoxide co-polymer is most significant. Industrially, this polymer is synthesized either as a methanol slurry, or via a gas phase reaction with immobilized catalysts.
Where external initiation is not employed for the methanol system, initiation can take place via methanolysis of the palladium(II) precursor, giving either a methoxide or a hydride complex. Termination occurs also by methanolysis. Depending on the end of the growing polymer chain, this results in either an ester or a ketone end group, and regenerating the palladium methoxide or hydride catalysts respectively.