Polysulfones are a family of thermoplastic polymers. These polymers are known for their toughness and stability at high temperatures. They contain the subunit aryl-SO2-aryl, the defining feature of which is the sulfone group. Polysulfones were introduced in 1965 by Union Carbide. Due to the high cost of raw materials and processing, polysulfones are used in specialty applications and often are a superior replacement for polycarbonates.
A typical polysulfone is produced by the reaction of a diphenol and bis(4-chlorophenyl)sulfone, forming a polyether by elimination of sodium chloride:
The diphenol is typically bisphenol-A or 1,4-dihydroxybenzene. Such step polymerizations require highly pure monomer to ensure high molecular weight products.
These polymers are rigid, high-strength, and transparent, retaining these properties between −100 °C and 150 °C. It has very high dimensional stability; the size change when exposed to boiling water or 150 °C air or steam generally falls below 0.1%. Its glass transition temperature is 185 °C.
Polysulfone is highly resistant to mineral acids, alkali, and electrolytes, in pH ranging from 2 to 13. It is resistant to oxidizing agents, therefore it can be cleaned by bleaches. It is also resistant to surfactants and hydrocarbon oils. It is not resistant to low-polar organic solvents (e.g. ketones and chlorinated hydrocarbons) and aromatic hydrocarbons. Mechanically, polysulfone has high compaction resistance, recommending its use under high pressures. It is also stable in aqueous acids and bases and many non-polar solvents; however, it is soluble in dichloromethane and methylpyrrolidone.