Plant senescence is the process of aging in plants. Plants have both stress-induced and age-related developmental aging. Chlorophyll degradation during leaf senescence reveals the carotenoids, and is the cause of autumn leaf color in deciduous trees. Leaf senescence has the important function of recycling nutrients, mostly nitrogen, to growing and storage organs of the plant. Unlike animals, plants continually form new organs and older organs undergo a highly regulated senescence program to maximize nutrient export.
Programmed senescence seems to be heavily influenced by plant hormones. The hormones abscisic acid, ethylene, jasmonic acid and salicylic acid are accepted by most scientists as promoters of senescence, but at least one source lists gibberellins, brassinosteroids and strigolactones as also being involved.Cytokinins help to maintain the plant cell and expression of cytokinin biosynthesis genes late in development prevents leaf senescence. Withdrawal of cytokinin, or if the cell cannot perceive the cytokinin, it may then undergo apoptosis or senescence. In addition, mutants that cannot perceive ethylene show delayed senescence. Genome-wide comparison of mRNAs expressed during dark-induced senescence versus those expressed during age-related developmental senescence demonstrate that jasmonic acid and ethylene are more important for dark-induced (stress-related) senescence while salicylic acid is more important for developmental senescence.
Some plants have evolved into annuals which die off at the end of each season and leave seeds for the next, whereas closely related plants in the same family have evolved to live as perennials. This may be a programmed "strategy" for the plants.
The benefit of an annual strategy may be genetic diversity, as one set of genes does continue year after year, but a new mix is produced each year. Secondly, being annual may allow the plants a better survival strategy, since the plant can put most of its accumulated energy and resources into seed production rather than saving some for the plant to overwinter, which would limit seed production.