*** Welcome to piglix ***

Plant Genetics


Plant genetics is different from that of animals in a few ways. Like , chloroplasts have their own DNA, complicating pedigrees somewhat. Like animals, plants have somatic mutations regularly, but these mutations can contribute to the germ line with ease, since flowers develop at the ends of branches composed of somatic cells. People have known of this for centuries, and mutant branches are called "sports". If the fruit on the sport is economically desirable, a new cultivar may be obtained.

Some plant species are capable of self-fertilization, and some are nearly exclusively self-fertilizers. This means that a plant can be both mother and father to its offspring, a rare occurrence in animals. Scientists and hobbyists attempting to make crosses between different plants must take special measures to prevent the plants from self-fertilizing. In plant breeding, people create hybrids between plant species for economic and aesthetic reasons, especially with orchids.

Plants are generally more capable of surviving, and indeed flourishing, as polyploids. In plants, polyploid individuals are created frequently by a variety of processes, and once created usually cannot cross back to the parental type. Polyploid individuals, if capable of self-fertilizing, can give rise to a new genetically distinct lineage, which can be the start of a new species. This is often called "instant speciation". Polyploids generally have larger fruit, an economically desirable trait, and many human food crops, including wheat, maize, potatoes, peanuts,strawberries and tobacco, are either accidentally or deliberately created polyploids.

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms and some viruses. The main role of DNA molecules is the long-term storage of information. DNA is often compared to a set of blueprints or a recipe, or a code, since it contains the instructions needed to construct other components of cells, such as proteins and RNA molecules. The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in regulating the use of this genetic information. Geneticists, including plant geneticists, use this sequencing of DNA to their advantage as they splice and delete certain genes and regions of the DNA molecule to produce a different or desired genotype and thus, also producing a different phenotype.


...
Wikipedia

...