*** Welcome to piglix ***

Picokernel


In computer science, a microkernel (also known as μ-kernel) is the near-minimum amount of software that can provide the mechanisms needed to implement an operating system (OS). These mechanisms include low-level address space management, thread management, and inter-process communication (IPC).

If the hardware provides multiple rings or CPU modes, the microkernel may be the only software executing at the most privileged level, which is generally referred to as supervisor or kernel mode. Traditional operating system functions, such as device drivers, and file systems, are typically removed from the microkernel itself and are instead run in user space.

In terms of the source code size, as a general rule microkernels tend to be smaller than monolithic kernels. The MINIX 3 microkernel, for example, has approximately 12,000 lines of code.

Microkernels trace their roots back to Danish computer pioneer Per Brinch Hansen and his tenure in Danish computer company Regnecentralen where he led software development efforts for the RC 4000 computer. In 1967, Regnecentralen was installing a RC 4000 prototype in a Polish fertilizer plant in Puławy. The computer used a small real-time operating system tailored for the needs of the plant. Brinch Hansen and his team became concerned with the lack of generality and reusability of the RC 4000 system. They feared that each installation would require a different operating system so they started to investigate novel and more general ways of creating software for the RC 4000. In 1969, their effort resulted in the completion of the RC 4000 Multiprogramming System. Its nucleus provided inter-process communication based on message-passing for up to 23 unprivileged processes, out of which 8 at a time were protected from one another. It further implemented scheduling of time slices of programs executed in parallel, initiation and control of program execution at the request of other running programs, and initiation of data transfers to or from peripherals. Besides these elementary mechanisms, it had no built-in strategy for program execution and resource allocation. This strategy was to be implemented by a hierarchy of running programs in which parent processes had complete control over child processes and acted as their operating systems.


...
Wikipedia

...