Names | |
---|---|
IUPAC name
(1R,2R,3S,4S,5R,6S)-cyclohexane-1,2,3,4,5,6-hexayl hexakis[dihydrogen (phosphate)]
|
|
Identifiers | |
83-86-3 | |
3D model (Jmol) | Interactive image |
ChEBI | CHEBI:17401 |
ChemSpider | 16735966 |
ECHA InfoCard | 100.001.369 |
E number | E391 (antioxidants, ...) |
PubChem | 890 |
UNII | 7IGF0S7R8I |
|
|
|
|
Properties | |
C6H18O24P6 | |
Molar mass | 660.03 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Phytic acid (known as inositol hexakisphosphate (IP6), inositol polyphosphate, or phytate when in salt form), discovered in 1903, a saturated cyclic acid, is the principal storage form of phosphorus in many plant tissues, especially bran and seeds. It can be found in cereals and grains.
Catabolites of phytic acid are called lower inositol polyphosphates. Examples are inositol penta- (IP5), tetra- (IP4), and triphosphate (IP3).
Phosphorus and inositol in phytate form are not, in general, bioavailable to nonruminant animals because these animals lack the digestive enzyme phytase required to remove phosphate from the inositol in the phytate molecule. Ruminants are readily able to digest phytate because of the phytase produced by rumen microorganisms.
In most commercial agriculture, nonruminant , such as swine, fowl, and fish, are fed mainly grains, such as maize, legumes, and soybeans. Because phytate from these grains and beans is unavailable for absorption, the unabsorbed phytate passes through the gastrointestinal tract, elevating the amount of phosphorus in the manure. Excess phosphorus excretion can lead to environmental problems, such as eutrophication.
Also, viable low-phytic acid mutant lines have been developed in several crop species in which the seeds have drastically reduced levels of phytic acid and concomitant increases in inorganic phosphorus. However, germination problems have reportedly hindered the use of these cultivars thus far. This may be due to phytic acid's critical role in both phosphorus and metal ion storage.