Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (excitation by photons), hence the prefix photo-. Following excitation various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphorescent processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.
Observation of photoluminescence at a certain energy can be viewed as indication that excitation populated an excited state associated with this transition energy.
While this is generally true in atoms and similar systems, correlations and other more complex phenomena also act as sources for photoluminescence in many-body systems such as semiconductors. A theoretical approach to handle this is given by the semiconductor luminescence equations.
Photoluminescence processes can be classified by various parameters such as the energy of the exciting photon with respect to the emission. Resonant excitation describes a situation in which photons of a particular wavelength are absorbed and equivalent photons are very rapidly re-emitted. This is often referred to as resonance fluorescence. For materials in solution or in the gas phase, this process involves electrons but no significant internal energy transitions involving molecular features of the chemical substance between absorption and emission. In crystalline inorganic semiconductors where an electronic band structure is formed, secondary emission can be more complicated as events may contain both coherent contributions such as resonant Rayleigh scattering where a fixed phase relation with the driving light field is maintained (i.e. energetically elastic processes where no losses are involved), and incoherent contributions (or inelastic modes where some energy channels into an auxiliary loss mode),