Phosphorus-32 is a radioactive isotope of phosphorus. The nucleus of phosphorus-32 contains 15 protons and 17 neutrons, one more neutron than the most common isotope of phosphorus, phosphorus-31. Phosphorus-32 only exists in small quantities on Earth as it has a short half-life of 14.29 days and so decays rapidly.
Phosphorus is found in many organic molecules and so phosphorus-32 has many applications in medicine, biochemistry and molecular biology where it can be used to trace phosphorylated molecules, e.g. in elucidating metabolic pathways, and radioactively label DNA.
Phosphorus has a short half-life of 14.29 days and decays into sulfur-32 by beta decay as shown in this nuclear equation:
1.709 MeV of energy is released during the decay. The kinetic energy of the electron varies with an average of approximately 0.5 MeV and the remainder of the energy is carried by the nearly undetectable electron antineutrino. In comparison to other beta radiation-emitting nuclides the electron is moderately energetic. It is blocked by around 1 m of air or 5 mm of acrylic glass.
The sulfur-32 nucleus produced is in the ground state so there is no additional gamma ray emission.
Phosphorus-32 has important uses in medicine, biochemistry and molecular biology. Its short half-life means useful quantities have to be produced synthetically. Phosphorus-32 can be generated synthetically by irradiation of sulfur-32 with moderately fast neutrons as shown in this nuclear equation: