*** Welcome to piglix ***

Perpendicular recording


Perpendicular recording (or Perpendicular Magnetic Recording, PMR) is a technology for data recording on hard disks. It was first proven advantageous in 1976 by Shun-ichi Iwasaki, then professor of the Tohoku University in Japan, and first commercially implemented in 2005. The first industry-standard demonstration showing unprecedented advantage of PMR over longitudinal magnetic recording (LMR) at nanoscale dimensions was made in 1998 at IBM Almaden Research Center in collaboration with researchers of Data Storage Systems Center (DSSC) – a National Science Foundation (NSF) Engineering Research Center (ERCs) at Carnegie Mellon University (CMU).

Perpendicular recording can deliver more than three times the storage density of traditional longitudinal recording. Perpendicular recording was first used by Toshiba in 3.5" floppy disks in 1989 to permit 2.88 MB of capacity (ED or extended density), but they failed to succeed in the marketplace. Since about 2005 the technology has come into use for hard disk drives. Hard disk technology with longitudinal recording has an estimated limit of 100 to 200 gigabit per square inch due to the superparamagnetic effect, though this estimate is constantly changing. Perpendicular recording is predicted to allow information densities of up to around 1 Tbit/sq. inch (1000 Gbit/sq. inch). As of August 2010 drives with densities of 667Gb/in2 were available commercially, and there have been perpendicular recording demonstrations of 800-900Gb/in2.

The main challenge in designing magnetic information storage media is to retain the magnetization of the medium despite thermal fluctuations caused by the superparamagnetic limit. If the thermal energy is too high, there may be enough energy to reverse the magnetization in a region of the medium, destroying the data stored there. The energy required to reverse the magnetization of a magnetic region is proportional to the size of the magnetic region and the magnetic coercivity of the material. The larger the magnetic region is and the higher the magnetic coercivity of the material, the more stable the medium is. Thus, there is a minimum size for a magnetic region at a given temperature and coercivity. If it is any smaller it is likely to be spontaneously de-magnetized by local thermal fluctuations. Perpendicular recording uses higher coercivity materials because the head's write field penetrates the medium more efficiently in the perpendicular geometry.


...
Wikipedia

...