*** Welcome to piglix ***

Permutation representation (symmetric group)


In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to problems of quantum mechanics for a number of identical particles.

The symmetric group Sn has order n!. Its conjugacy classes are labeled by partitions of n. Therefore according to the representation theory of a finite group, the number of inequivalent irreducible representations, over the complex numbers, is equal to the number of partitions of n. Unlike the general situation for finite groups, there is in fact a natural way to parametrize irreducible representations by the same set that parametrizes conjugacy classes, namely by partitions of n or equivalently Young diagrams of size n.

Each such irreducible representation can in fact be realized over the integers (every permutation acting by a matrix with integer coefficients); it can be explicitly constructed by computing the Young symmetrizers acting on a space generated by the Young tableaux of shape given by the Young diagram.

To each irreducible representation ρ we can associate an irreducible character, χρ. To compute χρ(π) where π is a permutation, one can use the combinatorial Murnaghan–Nakayama rule . Note that χρ is constant on conjugacy classes, that is, χρ(π) = χρ−1πσ) for all permutations σ.

Over other fields the situation can become much more complicated. If the field K has characteristic equal to zero or greater than n then by Maschke's theorem the group algebra KSn is semisimple. In these cases the irreducible representations defined over the integers give the complete set of irreducible representations (after reduction modulo the characteristic if necessary).


...
Wikipedia

...