*** Welcome to piglix ***

Particle therapy

Particle therapy
Intervention
ICD-9 92.26
[]

Particle therapy is a form of external beam radiotherapy using beams of energetic protons, neutrons, or positive ions for cancer treatment. The most common type of particle therapy as of 2012 is proton therapy. Although a photon, used in x-ray or gamma ray therapy, can also be considered a particle, photon therapy is not considered here. Additionally, electron therapy is generally put into its own category. Because of this, particle therapy is sometimes referred to, more correctly, as hadron therapy (that is, therapy with particles that are made of quarks).

Neutron capture therapy might be considered a type of particle therapy, but it is not discussed here, as the damage it does to tumors is mostly from energetic ions produced by the secondary nuclear reaction after the neutrons in the external beam are absorbed into boron-10 (or occasionally some other nuclide), and not due primarily to the neutrons themselves. It is therefore a type of secondary particle therapy.

Muon therapy, a rare type of particle therapy not within the categories above, has occasionally been attempted.

Particle therapy works by aiming energetic ionizing particles at the target tumor. These particles damage the DNA of tissue cells, ultimately causing their death. Because of their reduced ability to repair damaged DNA, cancerous cells are particularly vulnerable to attack.

The figure shows how beams of electrons, X-rays or protons of different energies (expressed in MeV) penetrate human tissue. Electrons have a short range and are therefore only of interest close to the skin (see electron therapy). Bremsstrahlung X-rays penetrate more deeply, but the dose absorbed by the tissue then shows the typical exponential decay with increasing thickness. For protons and heavier ions, on the other hand, the dose increases while the particle penetrates the tissue and loses energy continuously. Hence the dose increases with increasing thickness up to the Bragg peak that occurs near the end of the particle's range. Beyond the Bragg peak, the dose drops to zero (for protons) or almost zero (for heavier ions).


...
Wikipedia

...