*** Welcome to piglix ***

Paraconsistent


A paraconsistent logic is a logical system that attempts to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing paraconsistent (or "inconsistency-tolerant") systems of logic.

Inconsistency-tolerant logics have been discussed since at least 1910 (and arguably much earlier, for example in the writings of Aristotle); however, the term paraconsistent ("beside the consistent") was not coined until 1976, by the Peruvian philosopher Francisco Miró Quesada.

In classical logic (as well as intuitionistic logic and most other logics), contradictions entail everything. This curious feature, known as the principle of explosion or ex contradictione sequitur quodlibet (Latin, "from a contradiction, anything follows") can be expressed formally as

Which means: if P and its negation ¬P are both assumed to be true, then P is assumed to be true, from which it follows that at least one of the claims P and some other (arbitrary) claim A is true. However, if we know that either P or A is true, and also that P is not true (that ¬P is true) we can conclude that A, which could be anything, is true. Thus if a theory contains a single inconsistency, it is trivial—that is, it has every sentence as a theorem.

The characteristic or defining feature of a paraconsistent logic is that it rejects the principle of explosion. As a result, paraconsistent logics, unlike classical and other logics, can be used to formalize inconsistent but non-trivial theories.

Paraconsistent logics are propositionally weaker than classical logic; that is, they deem fewer propositional inferences valid. The point is that a paraconsistent logic can never be a propositional extension of classical logic, that is, propositionally validate everything that classical logic does. In some sense, then, paraconsistent logic is more conservative or cautious than classical logic. It is due to such conservativeness that paraconsistent languages can be more expressive than their classical counterparts including the hierarchy of metalanguages due to Alfred Tarski et al. According to Solomon Feferman [1984]: "…natural language abounds with directly or indirectly self-referential yet apparently harmless expressions—all of which are excluded from the Tarskian framework." This expressive limitation can be overcome in paraconsistent logic.


...
Wikipedia

...