*** Welcome to piglix ***

Outerplanar graph


In graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing.

Outerplanar graphs may be characterized (analogously to Wagner's theorem for planar graphs) by the two forbidden minors K4 and K2,3, or by their Colin de Verdière graph invariants. They have Hamiltonian cycles if and only if they are biconnected, in which case the outer face forms the unique Hamiltonian cycle. Every outerplanar graph is 3-colorable, and has degeneracy and treewidth at most 2.

The outerplanar graphs are a subset of the planar graphs, the subgraphs of series-parallel graphs, and the circle graphs. The maximal outerplanar graphs, those to which no more edges can be added while preserving outerplanarity, are also chordal graphs and visibility graphs.

Outerplanar graphs were first studied and named by Chartrand & Harary (1967), in connection with the problem of determining the planarity of graphs formed by using a perfect matching to connect two copies of a base graph (for instance, many of the generalized Petersen graphs are formed in this way from two copies of a cycle graph). As they showed, when the base graph is biconnected, a graph constructed in this way is planar if and only if its base graph is outerplanar and the matching forms a dihedral permutation of its outer cycle. Chartrand and Harary also proved an analogue of Kuratowski's theorem for outerplanar graphs, that a graph is outerplanar if and only if it does not contain a subdivision of one of the two graphs K4 or K2,3.


...
Wikipedia

...