*** Welcome to piglix ***

Organoborane


Organoborane or organoboron compounds are chemical compounds of boron and carbon that are organic derivatives of BH3, for example trialkyl boranes. Organoboron chemistry or organoborane chemistry is the chemistry of these compounds. Organoboron compounds are important reagents in organic chemistry enabling many chemical transformations, the most important one called hydroboration.

The C-B bond has low polarity (the difference in electronegativity 2.55 for carbon and 2.04 for boron), and therefore alkyl boron compounds are in general stable though easily oxidized.

In part because its lower electronegativity, boron often forms electron-deficient compounds, such as the triorganoboranes. Vinyl groups and aryl groups donate electrons and make boron less electrophilic and the C-B bond gains some double bond character. Like the parent borane, diborane, organoboranes are classified in organic chemistry as strong electrophiles because boron is unable to gain a full octet of electrons. Unlike diborane however, most organoboranes do not form dimers.

Simple organoboranes such as triethylborane or tris(pentafluorophenyl)boron can be prepared from trifluoroborane (as the ether complex) and the ethyl or pentafluorophenyl Grignard reagent.

Boranes react rapidly to alkenes in a process called hydroboration. This concept was discovered by Dr. Herbert Charles Brown, work for which he eventually received the Nobel Prize (jointly with Georg Wittig for his discovery of the Wittig reaction). Although diborane as a pure compound is a dimer, BH3 forms 1:1 complexes with basic solvents, for instance THF. In an ordinary electrophilic addition reaction of HX (X = Cl, Br, I, etc.), Markovnikov's rule, which states that the less electronegative atom, usually hydrogen, adds to the least substituted carbon of the double bond, this determines regioselectivity. With boranes the mode of action is the same, the hydrogen adds to the most substituted carbon because boron is less electronegative than hydrogen. When a positive charge develops in the alkene on the most substituted carbon atom, that is where the partially negatively charged hydrogen atom adds, leaving the least substituted carbon atom for the boron atom. The so-called anti-Markovnikov addition because when the boron is replaced with a hydroxyl group the overall reaction is addition of water over the double bond in what appears to be an anti-Makovnikov addition.


...
Wikipedia

...