*** Welcome to piglix ***

Operator algebras


In functional analysis, an operator algebra is an algebra of continuous linear operators on a topological vector space with the multiplication given by the composition of mappings. Although it is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory.

Operator algebras can be used to study sets of operators with little algebraic relation simultaneously. From this point of view, operator algebras can be regarded as a generalization of spectral theory of a single operator. In general operator algebras are non-commutative rings.

An operator algebra is typically required to be closed in a specified operator topology inside the algebra of the whole continuous linear operators. In particular, it is a set of operators with both algebraic and topological closure properties. In some disciplines such properties are axiomized and algebras with certain topological structure become the subject of the research.

Though algebras of operators are studied in various contexts (for example, algebras of pseudo-differential operators acting on spaces of distributions), the term operator algebra is usually used in reference to algebras of bounded operators on a Banach space or, even more specially in reference to algebras of operators on a separable Hilbert space, endowed with the operator norm topology.


...
Wikipedia

...