The Onsager–Machlup function is a function that summarizes the dynamics of a . It is used to define a probability density for a stochastic process, and it is similar to the Lagrangian of a dynamical system. It is named after Lars Onsager and S. Machlup who were the first to consider such probability densities.
The dynamics of a continuous stochastic process X from time t = 0 to t = T in one dimension, satisfying a
where W is a Wiener process, can in approximation be described by the probability density function of its value xi at a finite number of points in time ti:
where
and Δti = ti+1 − ti > 0, t1 = 0 and tn = T. A similar approximation is possible for processes in higher dimensions. The approximation is more accurate for smaller time step sizes Δti, but in the limit Δti → 0 the probability density function becomes ill defined, one reason being that the product of terms
diverges to infinity. In order to nevertheless define a density for the continuous stochastic process X, ratios of probabilities of X lying within a small distance ε from smooth curves φ1 and φ2 are considered:
as ε → 0, where L is the Onsager–Machlup function.
Consider a d-dimensional Riemannian manifold M and a diffusion process X = {Xt : 0 ≤ t ≤ T} on M with 1/2ΔM + b, where ΔM is the Laplace–Beltrami operator and b is a vector field. For any two smooth curves φ1, φ2 : [0, T] → M,