The oil drop experiment was performed by Robert A. Millikan and Harvey Fletcher in 1909 to measure the elementary electric charge (the charge of the electron).
The experiment entailed observing tiny charged droplets of oil between two horizontal metal electrodes. First, with zero applied electric field, the terminal velocity of a droplet was measured. At terminal velocity, the drag force equals the gravitational force, and these depend on the radius in different ways, so that the radius of the droplet, and therefore the mass and gravitational force, could be determined (using the known density of the oil). Then an adjustable voltage was applied between the plates to induce an electric field, and the voltage was adjusted until the drops were suspended in mechanical equilibrium, indicating that the electrical force and the gravitational force were balanced. Now using the known electric field, Millikan and Fletcher could determine the charge on the oil droplet. By repeating the experiment for many droplets, they confirmed that the charges were all small integer multiples of a certain base value, which was found to be ×10−19 C, about 0.6% difference from the currently accepted value of 1.5924(17)176487(40)×10−19 C. They proposed that this was the (negative of the) charge of a single electron. 1.602
Starting in 1908, while a professor at the University of Chicago, Millikan, with the significant input of Fletcher, and after improving his setup, published his seminal study in 1913. This remains controversial since papers found after Fletcher's death describe events in which Millikan coerced Fletcher into relinquishing authorship as a condition for receiving his PhD. In return, Millikan used his influence in support of Fletcher's career at Bell Labs.