Observation is the active acquisition of information from a primary source. In living beings, observation employs the senses. In science, observation can also involve the recording of data via the use of instruments. The term may also refer to any data collected during the scientific activity. Observations can be qualitative, that is, only the absence or presence of a property is noted, or quantitative if a numerical value is attached to the observed phenomenon by counting or measuring.
The scientific method requires observations of nature to formulate and test hypotheses. It consists of these steps:
Observations play a role in the second and fifth steps of the scientific method. However the need for reproducibility requires that observations by different observers can be comparable. Human sense impressions are subjective and qualitative, making them difficult to record or compare. The use of measurement developed to allow recording and comparison of observations made at different times and places, by different people. Measurement consists of using observation to compare the phenomenon being observed to a standard unit. The standard unit can be an artifact, process, or definition which can be duplicated or shared by all observers. In measurement the number of standard units which is equal to the observation is counted. Measurement reduces an observation to a number which can be recorded, and two observations which result in the same number are equal within the resolution of the process.
Senses are limited, and are subject to errors in perception such as optical illusions. Scientific instruments were developed to magnify human powers of observation, such as weighing scales, clocks, telescopes, microscopes, thermometers, cameras, and tape recorders, and also translate into perceptible form events that are unobservable by human senses, such as indicator dyes, voltmeters, spectrometers, infrared cameras, oscilloscopes, interferometers, geiger counters, and radio receivers.