*** Welcome to piglix ***

Number Field Sieve


In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log2n⌋ + 1 bits) is of the form

(in L-notation), where ln is the natural logarithm. It is a generalization of the special number field sieve: while the latter can only factor numbers of a certain special form, the general number field sieve can factor any number apart from prime powers (which are trivial to factor by taking roots). When the term number field sieve (NFS) is used without qualification, it refers to the general number field sieve.

The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler rational sieve or quadratic sieve. When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n1/2. The size of these values is exponential in the size of n (see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the size of n. Since these numbers are smaller, they are more likely to be smooth than the numbers inspected in previous algorithms. This is the key to the efficiency of the number field sieve. In order to achieve this speed-up, the number field sieve has to perform computations and factorizations in number fields. This results in many rather complicated aspects of the algorithm, as compared to the simpler rational sieve.


...
Wikipedia

...