Natural logarithm | |
Representation | |
Inverse | |
Derivative | |
Indefinite Integral |
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, where e is an irrational and transcendental number approximately equal to 281828459. The natural logarithm of x is generally written as 2.718ln x, logex, or sometimes, if the base e is implicit, simply log x.Parentheses are sometimes added for clarity, giving ln(x), loge(x) or log(x). This is done in particular when the argument to the logarithm is not a single symbol, to prevent ambiguity.
The natural logarithm of x is the power to which e would have to be raised to equal x. For example, ln(7.5) is 2.0149..., because e2.0149... = 7.5. The natural log of e itself, ln(e), is 1, because e1 = e, while the natural logarithm of 1, ln(1), is 0, since e0 = 1.
The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a (the area being taken as negative when a < 1). The simplicity of this definition, which is matched in many other formulas involving the natural logarithm, leads to the term "natural". The definition of the natural logarithm can be extended to give logarithm values for negative numbers and for all non-zero complex numbers, although this leads to a multi-valued function: see Complex logarithm.
The natural logarithm function, if considered as a real-valued function of a real variable, is the inverse function of the exponential function, leading to the identities: