*** Welcome to piglix ***

Normal topological space

Separation axioms
in topological spaces
Kolmogorov classification
T0  (Kolmogorov)
T1  (Fréchet)
T2  (Hausdorff)
T2½ (Urysohn)
completely T2  (completely Hausdorff)
T3  (regular Hausdorff)
T (Tychonoff)
T4  (normal Hausdorff)
T5  (completely normal
 Hausdorff)
T6  (perfectly normal
 Hausdorff)
History

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

A topological space X is a normal space if, given any disjoint closed sets E and F, there are neighbourhoods U of E and V of F that are also disjoint. More intuitively, this condition says that E and F can be separated by neighbourhoods.

A T4 space is a T1 space X that is normal; this is equivalent to X being normal and Hausdorff.

A completely normal space or a hereditarily normal space is a topological space X such that every subspace of X with subspace topology is a normal space. It turns out that X is completely normal if and only if every two separated sets can be separated by neighbourhoods.

A completely T4 space, or T5 space is a completely normal T1 space topological space X, which implies that X is Hausdorff; equivalently, every subspace of X must be a T4 space.


...
Wikipedia

...