*** Welcome to piglix ***

Non-inertial frame


A non-inertial reference frame is a frame of reference that is undergoing acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will in general detect a non-zero acceleration. In a curved spacetime all frames are non-inertial. The laws of motion in non-inertial frames do not take the simple form they do in inertial frames, and the laws vary from frame to frame depending on the acceleration. To explain the motion of bodies entirely within the viewpoint of non-inertial reference frames, fictitious forces (also called inertial forces, pseudo-forces and d'Alembert forces) must be introduced to account for the observed motion, such as the Coriolis force or the centrifugal force, as derived from the acceleration of the non-inertial frame. As stated by Goodman and Warner, "One might say that F = ma holds in any coordinate system provided the term 'force' is redefined to include the so-called 'reversed effective forces' or 'inertia forces'."

In flat spacetime, the use of non-inertial frames can be avoided if desired. Measurements with respect to non-inertial reference frames can always be transformed to an inertial frame, incorporating directly the acceleration of the non-inertial frame as that acceleration as seen from the inertial frame. This approach avoids use of fictitious forces (it is based on an inertial frame, where fictitious forces are absent, by definition) but it may be less convenient from an intuitive, observational, and even a calculational viewpoint. As pointed out by Ryder for the case of rotating frames as used in meteorology:

A simple way of dealing with this problem is, of course, to transform all coordinates to an inertial system. This is, however, sometimes inconvenient. Suppose, for example, we wish to calculate the movement of air masses in the earth's atmosphere due to pressure gradients. We need the results relative to the rotating frame, the earth, so it is better to stay within this coordinate system if possible. This can be achieved by introducing fictitious (or "non-existent") forces which enable us to apply Newton's Laws of Motion in the same way as in an inertial frame.

That a given frame is non-inertial can be detected by its need for fictitious forces to explain observed motions. For example, the rotation of the Earth can be observed using a Foucault pendulum. The rotation of the Earth seemingly causes the pendulum to change its plane of oscillation because the surroundings of the pendulum move with the Earth. As seen from an Earth-bound (non-inertial) frame of reference, the explanation of this apparent change in orientation requires the introduction of the fictitious Coriolis force.


...
Wikipedia

...