In classical physics and special relativity, an inertial frame of reference (also inertial reference frame or inertial frame, Galilean reference frame or inertial space) is a frame of reference that describes time and space homogeneously, isotropically, and in a time-independent manner. The physics of a system in an inertial frame have no causes external to the system.
All inertial frames are in a state of constant, motion with respect to one another; an accelerometer moving with any of them would detect zero acceleration. Measurements in one inertial frame can be converted to measurements in another by a simple transformation (the Galilean transformation in Newtonian physics and the Lorentz transformation in special relativity). In general relativity, in any region small enough for the curvature of spacetime and tidal forces to be negligible, one can find a set of inertial frames that approximately describe that region. Systems in non-inertial frames in general relativity don't have external causes because of the principle of geodesic motion.
Physical laws take the same form in all inertial frames. By contrast, in a non-inertial reference frame in classical physics and special relativity, the physics of a system vary depending on the acceleration of that frame with respect to an inertial frame, and the usual physical forces must be supplemented by fictitious forces. For example, a ball dropped towards the ground does not go exactly straight down because the Earth is rotating. Someone rotating with the Earth must account for the Coriolis effect—in this case thought of as a force—to predict the horizontal motion. Another example of such a fictitious force associated with rotating reference frames is the centrifugal effect, or centrifugal force.