Nitrospira moscoviensis | |
---|---|
Scientific classification | |
Kingdom: | Bacteria |
Phylum: | Nitrospirae |
Class: | Nitrospira |
Order: | Nitrospirales |
Family: | Nitrospiraceae |
Genus: | Nitrospira |
Species: | N. moscoviensis |
Binomial name | |
Nitrospira moscoviensis Garrity et al. 2001 |
Nitrospira moscoviensis was the second bacterium classified under the most diverse nitrite-oxidizing bacteria phylum, Nitrospirae. It is a gram-negative, non-motile, facultative lithoauthotropic bacterium that was discovered in Moscow, Russia in 1995. The genus name, Nitrospira, originates from the prefix “nitro” derived from nitrite, the microbe’s electron donor and “spira” meaning coil or spiral derived from the microbe’s shape. The species name, moscoviensis, is derived from Moscow, where the species was first discovered.N. moscoviensis could potentially be used in the production of bio-degradable polymers.
In 1995, Silke Ehrich discovered Nitrospira moscoviensis in a sample taken from an eroded iron pipe. The pipe was a part of a heating system in Moscow, Russia. The rust was transferred to a culture where cells could be isolated. For optimum growth, Ehrich and his team cultivated the cells on a mineral salt medium at a temperature of 39 °C and at a pH of 7.6-8.0.
Nitrospira moscoviensis is classified as being gram-negative, non-motile, and having a curved rod shape. The curved rods are approximately 0.9-2.2 µm long x 0.2-0.4 µm wide.N. moscoviensis can exist in both aquatic and terrestrial habitats and reproduces using binary fission. Defining features of N. moscoviensis is the absence of intra-cytoplasmic membranes and carboxysomes possession of a flatulent periplasmic space.
Nitrospira moscoviensis is a facultative lithoautotroph commonly referred to as a chemolithoautotroph. In aerobic environments, N. moscoviensis obtains energy by oxidizing nitrite to nitrate. Without the element molybdenum, the nitrite-oxidizing system will not function. When N. moscoviensis is in nitrite free environments it can use aerobic hydrogen oxidation. When N. moscoviensis reduces nitrite using hydrogen as an electron donor growth is blocked. A key difference in N. moscoviensis’ nitrite-oxidizing system is location; unlike most nitrate oxidizing systems, it is not located in the cytoplasmic membrane. Kirstein and Bock (1993) implied that the location of the nitrite-oxidizing system corresponds directly to N. moscoviensis having an enlarged periplasmic space. By oxidizing nitrate outside of the cytoplasmic membrane, a permease nitrite system is not needed for the proton gradient. The exocytoplasmic oxidation of nitrite also prevents build-up of toxic nitrite within the cytoplasm. Another important metabolism ability for N. moscoviensis is its ability to cleave urea to ammonia and CO2. The ability to use urea comes directly from the presence of urease encoding genes which is interesting because most nitrite-oxidizing bacteria are unable to use ammonia as an energy source.Urease encoding genes function by catalyzing urea hydrolysis to form ammonia and carbamate.