The gravitational constant (also known as the "universal gravitational constant", the "Newtonian constant of gravitation", or the "Cavendish gravitational constant"), denoted by the letter G, is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's general theory of relativity.
In Newton's law, it is the proportionality constant connecting the gravitational force between two bodies with the product of their masses and the inverse square of their distance. In the Einstein field equations, it quantifies the relation between spacetime topology and energy–momentum.
The measured value of the constant is known with some certainty to four significant digits. In SI units its value is approximately ×10−11 N·kg–2·m2. 6.674
The modern notation of Newton's law involving G was introduced in the 1890s by C. V. Boys. The first implicit measurement with an accuracy within about 1% is due to Henry Cavendish in a 1798 experiment.
According to Newton's law of universal gravitation, the attractive force (F) between two point-like bodies is directly proportional to the product of their masses (m1 and m2), and inversely proportional to the square of the distance, r, (inverse-square law) between them: