The Cavendish experiment, performed in 1797–1798 by British scientist Henry Cavendish, was the first experiment to measure the force of gravity between masses in the laboratory and the first to yield accurate values for the gravitational constant. Because of the unit conventions then in use, the gravitational constant does not appear explicitly in Cavendish's work. Instead, the result was originally expressed as the specific gravity of the Earth, or equivalently the mass of the Earth. His experiment gave the first accurate values for these geophysical constants.
The experiment was devised sometime before 1783 by geologist John Michell, who constructed a torsion balance apparatus for it. However, Michell died in 1793 without completing the work. After his death the apparatus passed to Francis John Hyde Wollaston and then to Henry Cavendish, who rebuilt the apparatus but kept close to Michell's original plan. Cavendish then carried out a series of measurements with the equipment and reported his results in the Philosophical Transactions of the Royal Society in 1798.
The apparatus constructed by Cavendish was a torsion balance made of a six-foot (1.8 m) wooden rod suspended from a wire, with a 2-inch (51 mm) diameter 1.61-pound (0.73 kg) lead sphere attached to each end. Two 12-inch (300 mm) 348-pound (158 kg) lead balls were located near the smaller balls, about 9 inches (230 mm) away, and held in place with a separate suspension system. The experiment measured the faint gravitational attraction between the small balls and the larger ones.
The two large balls were positioned on alternate sides of the horizontal wooden arm of the balance. Their mutual attraction to the small balls caused the arm to rotate, twisting the wire supporting the arm. The arm stopped rotating when it reached an angle where the twisting force of the wire balanced the combined gravitational force of attraction between the large and small lead spheres. By measuring the angle of the rod and knowing the twisting force (torque) of the wire for a given angle, Cavendish was able to determine the force between the pairs of masses. Since the gravitational force of the Earth on the small ball could be measured directly by weighing it, the ratio of the two forces allowed the density of the earth to be calculated, using Newton's law of gravitation.