In Big Bang cosmology, neutrino decoupling refers to the epoch at which neutrinos ceased interacting with baryonic matter, and thereby ceased influencing the dynamics of the universe at early times. Prior to decoupling, neutrinos were in thermal equilibrium with protons, neutrons, and electrons, which was maintained through the weak interaction. Decoupling occurred approximately at the time when the rate of those weak interactions was slower than the rate of expansion of the universe. Alternatively, it was the time when the time scale for weak interactions became greater than the age of the universe at that time. Neutrino decoupling took place approximately one second after the Big Bang, when the temperature of the universe was approximately 10 billion kelvins, or 1 MeV.
Neutrinos are scattered (interfering with free streaming) by their interactions with electrons and positrons, such as the reaction
.