The neutral theory of molecular evolution holds that at the molecular level most evolutionary changes and most of the variation within and between species is not caused by natural selection but by genetic drift of mutant alleles that are neutral. A neutral mutation is one that does not affect an organism's ability to survive and reproduce. The neutral theory allows for the possibility that most mutations are deleterious, but holds that because these are rapidly purged by natural selection, they do not make significant contributions to variation within and between species at the molecular level. Mutations that are not deleterious are assumed to be mostly neutral rather than beneficial. In addition to assuming the primacy of neutral mutations, the theory also assumes that the fate of neutral mutations is determined by the sampling processes described by specific models of random genetic drift.
The theory was introduced by a Japanese biologist Motoo Kimura in 1968, and independently by two American biologists Jack Lester King and Thomas Hughes Jukes in 1969. According to Kimura, the theory applies only for evolution at the molecular level, and phenotypic evolution is controlled by natural selection, as postulated by Charles Darwin. The proposal of the neutral theory was followed by an extensive "neutralist-selectionist" controversy over the interpretation of patterns of molecular divergence and polymorphism, peaking in the 1970s and 1980s. The controversy is still unsettled among evolutionary biologists.
While some scientists, such as Freese (1962) and Freese and Yoshida (1965), had suggested that neutral mutations were probably widespread, a coherent theory of neutral evolution was proposed by Motoo Kimura in 1968, and by King and Jukes independently in 1969.
Kimura, King, and Jukes suggested that when one compares the genomes of existing species, the vast majority of molecular differences are selectively "neutral", i.e. the molecular changes represented by these differences do not influence the fitness of organisms. As a result, the theory regards these genomic features as neither subject to, nor explicable by, natural selection. This view is based in part on the degenerate genetic code, in which sequences of three nucleotides (codons) may differ and yet encode the same amino acid (GCC and GCA both encode alanine, for example). Consequently, many potential single-nucleotide changes are in effect "silent" or "unexpressed" (see synonymous or silent substitution). Such changes are presumed to have little or no biological effect.