*** Welcome to piglix ***

Genetic drift


Genetic drift (also known as allelic drift or the Sewall Wright effect after biologist Sewall Wright) is the change in the frequency of a gene variant (allele) in a population due to random sampling of organisms. The alleles in the offspring are a sample of those in the parents, and chance has a role in determining whether a given individual survives and reproduces. A population's allele frequency is the fraction of the copies of one gene that share a particular form. Genetic drift may cause gene variants to disappear completely and thereby reduce genetic variation.

When there are few copies of an allele, the effect of genetic drift is larger, and when there are many copies the effect is smaller. In the early 20th century, vigorous debates occurred over the relative importance of natural selection versus neutral processes, including genetic drift. Ronald Fisher, who explained natural selection using Mendelian genetics, held the view that genetic drift plays at the most a minor role in evolution, and this remained the dominant view for several decades. In 1968, population geneticist Motoo Kimura rekindled the debate with his neutral theory of molecular evolution, which claims that most instances where a genetic change spreads across a population (although not necessarily changes in phenotypes) are caused by genetic drift acting on neutral mutations.

The process of genetic drift can be illustrated using 20 marbles in a jar to represent 20 organisms in a population. Consider this jar of marbles as the starting population. Half of the marbles in the jar are red and half blue, and both colours correspond to two different alleles of one gene in the population. In each new generation the organisms reproduce at random. To represent this reproduction, randomly select a marble from the original jar and deposit a new marble with the same colour as its "offspring" into a new jar. (The selected marble remains in the original jar.) Repeat this process until there are 20 new marbles in the second jar. The second jar then contains a second generation of "offspring," consisting of 20 marbles of various colours. Unless the second jar contains exactly 10 red marbles and 10 blue marbles, a random shift occurred in the allele frequencies.


...
Wikipedia

...