*** Welcome to piglix ***

NaBH4

Sodium borohydride
Wireframe model of sodium borohydride
Sodium borohydride.jpg
Names
Preferred IUPAC name
Sodium tetrahydridoborate (1–)
Systematic IUPAC name
Sodium boranuide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.037.262
EC Number 241-004-4
23167
MeSH Sodium+borohydride
PubChem CID
RTECS number ED3325000
UN number 1426
Properties
NaBH4
Molar mass 37.83 g/mol
Appearance white crystals
hygroscopic
Density 1.0740 g/cm3
Melting point 400 °C (752 °F; 673 K)
Boiling point 500 °C (932 °F; 773 K) (decomposes)
soluble, reacts with water
Solubility soluble in liquid ammonia, amines, pyridine
Hazards
H260, H301, H311, H314
P223, P231, P232, P280, P301+310, P370+378, P422
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g., phosphorus Special hazard W: Reacts with water in an unusual or dangerous manner. E.g., cesium, sodiumNFPA 704 four-colored diamond
Flash point 70 °C (158 °F; 343 K)
ca. 220 °C (428 °F; 493 K)
Explosive limits 3%
Lethal dose or concentration (LD, LC):
LD50 (median dose)
160 mg/kg (Oral - Rat)
230 mg/kg (Dermal - Rabbit)
Related compounds
Other anions
Sodium cyanoborohydride
Sodium hydride
Sodium borate
Borax
Other cations
Lithium borohydride
Related compounds
Lithium aluminium hydride
Sodium triacetoxyborohydride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, is an inorganic compound with the formula NaBH4. This white solid, usually encountered as a powder, is a versatile reducing agent that finds wide application in chemistry, both in the laboratory and on a technical scale. It has been tested as pretreatment for pulping of wood, but is too costly to be commercialized. The compound is soluble in alcohols and certain ethers but reacts with water in the absence of a base.

The compound was discovered in the 1940s by H. I. Schlesinger, who led a team that developed metal borohydrides for wartime applications (in particular, looking for a uranium compound more volatile than the hexafluoride to be used in isotope separation by gaseous diffusion; this line of research did not yield useful results). Their work was declassified and published only in 1953.

Sodium borohydride is an odorless white to gray-white microcrystalline powder which often forms lumps. It can be purified by recrystallization from warm (50 °C) diglyme. Sodium borohydride is soluble in protic solvents such as water and lower alcohols; it will also react with these solvents to produce H2; however, these reactions are fairly slow. Complete decomposition in excess methanol can take nearly 90 min at 20 °C. It will decompose in neutral or acidic aqueous solutions but is stable at pH 14. These conditions can be exploited to allow sodium borohydride to react in a homogeneous manner, with reduced lifespan being traded against increased reactivity.

NaBH4 is a salt, consisting of the tetrahedral BH4 anion. The solid is known to exist as three polymorphs: α, β and γ. The stable phase at room temperature and pressure is α-NaBH4, which is cubic and adopts an NaCl-type structure, in the Fm3m space group. At a pressure of 6.3 GPa, the structure changes to the tetragonal β-NaBH4 (space group P421c) and at 8.9 GPa, the orthorhombic γ-NaBH4 (space group Pnma) becomes the most stable.


...
Wikipedia

...