NOνA (NuMI Off-Axis νe Appearance) is a particle physics experiment designed to detect neutrinos in Fermilab's NuMI (Neutrinos at the Main Injector) beam. Intended to be the successor to MINOS, NOνA will consist of two detectors, one at Fermilab (the near detector), and one in northern Minnesota (the far detector). Neutrinos from NuMI will pass through 810 km of Earth to reach the far detector. NOνA's main goal is to observe the oscillation of muon neutrinos to electron neutrinos. By observing how many neutrinos change from one type to the other, NOνA hopes to accomplish three things:
Neutrino oscillation is parameterized by the PMNS matrix and the mass squared differences between the neutrino mass eigenstates. Assuming that three flavors of neutrinos participate in neutrino mixing, there are six variables that affect neutrino oscillation: the three angles θ12, θ23, and θ13, a CP-violating phase δ, and any two of the three mass squared differences. There is currently no compelling theoretical reason to expect any particular value of, or relationship between, these parameters.
θ23 and θ12 have been measured to be non-zero by several experiments but the most sensitive search for non-zero θ13 by the CHOOZ collaboration yielded only an upper limit. More recently, in 2012, θ13 was measured at Daya Bay to be non-zero to a statistical significance of 5.2σ. The following year, T2K discovered the transition excluding the non-appearance hypothesis with a significance of 7.3σ. No measurement of δ has been made. The absolute values of two mass squared differences are known, but because one is very small compared to the other, the ordering of the masses has not been determined.