*** Welcome to piglix ***

Multivariate probability distribution


In the study of probability, given at least two random variables X, Y, ..., that are defined on a probability space, the joint probability distribution for X, Y, ... is a probability distribution that gives the probability that each of X, Y, ... falls in any particular range or discrete set of values specified for that variable. In the case of only two random variables, this is called a bivariate distribution, but the concept generalizes to any number of random variables, giving a multivariate distribution.

The joint probability distribution can be expressed either in terms of a joint cumulative distribution function or in terms of a joint probability density function (in the case of continuous variables) or joint probability mass function (in the case of discrete variables). These in turn can be used to find two other types of distributions: the marginal distribution giving the probabilities for any one of the variables with no reference to any specific ranges of values for the other variables, and the conditional probability distribution giving the probabilities for any subset of the variables conditional on particular values of the remaining variables.

Suppose each of two urns contains twice as many red balls as blue balls, and no others, and suppose one ball is randomly selected from each urn, with the two draws independent of each other. The probability of drawing a red ball from either of the urns is 2/3, and the probability of drawing a blue ball is 1/3. We can present the joint probability distribution as the following table:

Each of the four inner cells shows the probability of a particular combination of results from the two draws; these probabilities are the joint distribution. In any one cell the probability of a particular combination occurring is (since the draws are independent) the product of the probability of the specified result for A and the probability of the specified result for B. The probabilities in these four cells sum to 1, as is always true for probability distributions.


...
Wikipedia

...