A multi-compartment model is a type of mathematical model used for describing the way materials or energies are transmitted among the compartments of a system. Each compartment is assumed to be a homogeneous entity within which the entities being modelled are equivalent. For instance, in a pharmacokinetic model, the compartments may represent different sections of a body within which the concentration of a drug is assumed to be uniformly equal.
Hence a multi-compartment model is a lumped parameters model.
Multi-compartment models are used in many fields including pharmacokinetics, epidemiology, biomedicine, systems theory, complexity theory, engineering, physics, information science and social science. The circuits systems can be viewed as a multi-compartment model as well.
In systems theory, it involves the description of a network whose components are compartments that represent a population of elements that are equivalent with respect to the manner in which they process input signals to the compartment.
Most commonly, the mathematics of multi-compartment models is simplified to provide only a single parameter—such as concentration—within a compartment.
Possibly the simplest application of multi-compartment model is in the single-cell concentration monitoring (see the figure above). If the volume of a cell is V, the mass of solute is q, the input is u(t) and the secretion of the solution is proportional to the density of it within the cell, then the concentration of the solution C within the cell over time is given by
where k is the proportionality.
As the number of compartments increases, the model can be very complex and the solutions usually beyond ordinary calculation. Below shows a three-cell model with interlinks among each other.
The formulae for n-cell multi-compartment models become:
Where
Or in matrix forms: