*** Welcome to piglix ***

Compartmental models in epidemiology


The establishment and spread of infectious diseases is a complex phenomenon with many interacting factors, e.g., the environment in which the pathogen and hosts are situated, the population(s) it is exposed to, and the intra- and inter-dynamics of the population it is exposed to. The role of mathematical epidemiology is to model the establishment and spread of pathogens. A predominant method of doing so, is to use the notion of abstracting the population into compartments under certain assumptions, which represent their health status with respect to the pathogen in the system. One of the cornerstone works to achieve success in this method was done by Kermack and McKendrick in the early 1900s.

These models are known as compartmental models in epidemiology, and serve as a base mathematical framework for understanding the complex dynamics of these systems, which hope to model the main characteristics of the system. These compartments, in the simplest case, can stratify the population into two health states: susceptible to the infection of the pathogen (often denoted by S); and infected by the pathogen (given the symbol I). The way that these compartments interact is often based upon phenomenological assumptions, and the model is built up from there. These models are usually investigated through ordinary differential equations (which are deterministic), but can also be viewed in more realistic stochastic framework (for example, the Gillespie model). To push these basic models to further realism, other compartments are often included, most notably the recovered/removed/immune compartment (denoted R).

Once one is able to model an infectious pathogen with compartmental models, one can predict the various properties of the pathogen spread, for example the prevalence (total number of infected from the epidemic) and the duration of the epidemic. Also, one can understand how different situations may affect the outcome of the epidemic, e.g., what is the best technique for issuing a limited number of vaccines in a given population?

The SIR model labels these three compartments S = number susceptible, I =number infectious, and R =number recovered (immune). This is a good and simple model for many infectious diseases including measles, mumps and rubella.

The letters also represent the number of people in each compartment at a particular time. To indicate that the numbers might vary over time (even if the total population size remains constant), we make the precise numbers a function of t (time): S(t), I(t) and R(t). For a specific disease in a specific population, these functions may be worked out in order to predict possible outbreaks and bring them under control.


...
Wikipedia

...