*** Welcome to piglix ***

Moseley's Law


Moseley's law is an empirical law concerning the characteristic x-rays that are emitted by atoms. The law was discovered and published by the English physicist Henry Moseley in 1913. It is historically important in quantitatively justifying the conception of the nuclear model of the atom, with all, or nearly all, positive charges of the atom located in the nucleus, and associated on an integer basis with atomic number. Until Moseley's work, "atomic number" was merely an element's place in the periodic table, and was not known to be associated with any measureable physical quantity. Moseley was able to show that the frequencies of certain characteristic X-rays emitted from chemical elements are proportional to the square of a number which was close to the element's atomic number; a finding which supported Van den Broek and Bohr's model of the atom in which the atomic number is the same as the number of positive charges in the nucleus of the atom. In brief, the law states that the square root of the frequency of the emitted x-ray is proportional to the atomic number.

William Lawrence Bragg had discovered X-ray crystallography in 1911 which was a method of using an x-ray tube to aim x-rays at an element and measure the diffraction lines and spectra produced. Moseley and other physicists used this technique to study various elements. The use of x-rays does not produce the full spectrum of a heated element, but produces a limited number of spectral lines within the x-ray region with the most visually prominent or intense line denoted as the K-alpha line.

Following conversations in 1913 with Niels Bohr, a fellow worker in Ernest Rutherford's Cavendish laboratory, Moseley had become interested in the Bohr model of the atom, in which the spectra of light emitted by atoms is proportional to the square of Z, the charge on their nucleus (which had just been discovered two years before). Bohr's formula had worked well to give the previously known Rydberg formula for the hydrogen atom, but it was not known then if it would also give spectra for other elements with higher Z numbers, or even precisely what the Z numbers (in terms of charge) for heavier elements were. In particular, only two years earlier, Rutherford in 1911 had postulated that Z for gold atoms might be about half of its atomic weight, and only shortly afterward, Antonius van den Broek had made the bold suggestion that Z was not half of the atomic weight for elements, but instead was exactly equal to the element's atomic number, or place in the periodic table. This position in the table was not known to have any physical significance up to that time, except as a way to order elements in a particular sequence so that their chemical properties would match up.


...
Wikipedia

...