*** Welcome to piglix ***

Molybdenum hexacarbonyl

Molybdenum hexacarbonyl
Stereo, skeletal formula of molybdenum hexacarbonyl
Ball and stick model of molybdenum hexacarbonyl
Sample of molybdenum hexacarbonyl
Names
IUPAC name
Hexacarbonylmolybdenum(0)
Systematic IUPAC name
Hexacarbonylmolybdenum
Identifiers
13939-06-5 YesY
3D model (Jmol) Interactive image
ChEBI CHEBI:30508 N
ChemSpider 21428397 N
ECHA InfoCard 100.034.271
EC Number 237-713-3
3798, 562210
MeSH Hexacarbonylmolybdenum
PubChem 98885
UN number 3466
Properties
C6MoO6
Molar mass 264.01 g·mol−1
Appearance Vivid, white, translucent crystals
Density 1.96 g cm−3
Melting point 150 °C (302 °F; 423 K)
Boiling point 156 °C (313 °F; 429 K)
Structure
Orthogonal
Octahedral
0 D
Thermochemistry
−989.1 kJ mol−1
−2123.4 kJ mol−1
Hazards
Safety data sheet External MSDS
Very Toxic T+
R-phrases R26/27/28
S-phrases (S1/2), S36/37/39, S45
Related compounds
Related compounds
Chromium hexacarbonyl

Tungsten hexacarbonyl

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Tungsten hexacarbonyl

Molybdenum hexacarbonyl (also called molybdenum carbonyl) is the chemical compound with the formula Mo(CO)6. This colorless solid, like its chromium and tungsten analogues, is noteworthy as a volatile, air-stable derivative of a metal in its zero oxidation state.

Mo(CO)6 adopts an octahedral geometry consisting of six rod-like CO ligands radiating from the central Mo atom. A recurring minor debate in some chemical circles concerns the definition of an "organometallic" compound. Usually, organometallic indicates the presence of a metal directly bonded via a M–C bond to an organic fragment, which must in turn have a C–H bond. By this strict definition, Mo(CO)6 is not organometallic.

Mo(CO)6 is prepared by the reduction of molybdenum chlorides or oxides under a pressure of carbon monoxide, although it would be unusual to prepare this inexpensive compound in the laboratory. The compound is somewhat air-stable and sparingly soluble in nonpolar organic solvents.

Mo(CO)6 has been detected in landfills and sewage plants, the reducing, anaerobic environment being conducive to formation of Mo(CO)6.

Mo(CO)6 is a popular reagent in organometallic synthesis because one or more CO ligands can be displaced by other donor ligands. Mo(CO)6, [Mo(CO)3(MeCN)3], and related derivatives are employed as catalysts in organic synthesis for example, alkyne metathesis and the Pauson–Khand reaction.

Mo(CO)6 reacts with 2,2′-bipyridine to afford Mo(CO)4(bipy). UV-photolysis of a THF solution of Mo(CO)6 gives Mo(CO)5(THF).


...
Wikipedia

...