In statistics, regression validation is the process of deciding whether the numerical results quantifying hypothesized relationships between variables, obtained from regression analysis, are acceptable as descriptions of the data. The validation process can involve analyzing the goodness of fit of the regression, analyzing whether the regression residuals are random, and checking whether the model's predictive performance deteriorates substantially when applied to data that were not used in model estimation.
An R2 (coefficient of determination) close to one does not guarantee that the model fits the data well, because as Anscombe's quartet shows, a high R2 can occur in the presence of misspecification of the functional form of a relationship or in the presence of outliers that distort the true relationship.
One problem with the R2 as a measure of model validity is that it can always be increased by adding more variables into the model, except in the unlikely event that the additional variables are exactly uncorrelated with the dependent variable in the data sample being used.
The residuals from a fitted model are the differences between the responses observed at each combination of values of the explanatory variables and the corresponding prediction of the response computed using the regression function. Mathematically, the definition of the residual for the ith observation in the data set is written
with yi denoting the ith response in the data set and xi the vector of explanatory variables, each set at the corresponding values found in the ith observation in the data set.
If the model fit to the data were correct, the residuals would approximate the random errors that make the relationship between the explanatory variables and the response variable a statistical relationship. Therefore, if the residuals appear to behave randomly, it suggests that the model fits the data well. On the other hand, if non-random structure is evident in the residuals, it is a clear sign that the model fits the data poorly. The next section details the types of plots to use to test different aspects of a model and gives the correct interpretations of different results that could be observed for each type of plot.