Methanogenesis or biomethanation is the formation of methane by microbes known as methanogens. Organisms capable of producing methane have been identified only from the domain Archaea, a group phylogenetically distinct from both eukaryotes and bacteria, although many live in close association with anaerobic bacteria. The production of methane is an important and widespread form of microbial metabolism. In most environments, it is the final step in the decomposition of biomass.
Methanogenesis in microbes is a form of anaerobic respiration. Methanogens do not use oxygen to respire; in fact, oxygen inhibits the growth of methanogens. The terminal electron acceptor in methanogenesis is not oxygen, but carbon. The carbon can occur in a small number of organic compounds, all with low molecular weights. The two best described pathways involve the use of acetic acid and inorganic carbon dioxide as terminal electron acceptors:
However, depending on pH and temperature, methanogenesis has been shown to use carbon from other small organic compounds, such as formic acid (formate), methanol, methylamines, tetramethylammonium, dimethyl sulfide, and methanethiol. The catabolism of the methyl compounds is mediated by methyl transferases to give methyl coenzyme M.
The biochemistry of methanogenesis is relatively complex, involving the following coenzymes and cofactors: F420, coenzyme B, coenzyme M, methanofuran, and methanopterin.