*** Welcome to piglix ***

Metastability in the brain


In the field of computational neuroscience, the theory of metastability refers to the human brain’s ability to integrate several functional parts and to produce neural oscillations in a cooperative and coordinated manner, providing the basis for conscious activity.

Metastability, a state in which signals (such as oscillatory waves) fall outside their natural equilibrium state but persist for an extended period of time, is a principle that describes the brain’s ability to make sense out of seemingly random environmental cues. In the past 25 years, interest in metastability and the underlying framework of nonlinear dynamics has been fueled by advancements in the methods by which computers model brain activity.

EEG measures the gross electrical activity of the brain that can be observed on the surface of the skull. In the metastability theory, EEG outputs produce oscillations that can be described as having identifiable patterns that correlate with each other at certain frequencies. Each neuron in a neuronal network normally outputs a dynamical oscillatory waveform, but also has the ability to output a chaotic waveform. When neurons are integrated into the neural network by interfacing neurons with each other, the dynamical oscillations created by each neuron can be combined to form highly predictable EEG oscillations.

By identifying these correlations and the individual neurons that contribute to predictable EEG oscillations, scientists can determine which cortical domains are processing in parallel and which neuronal networks are intertwined. In many cases, metastability describes instances in which distal parts of the brain interact with each other to respond to environmental stimuli.

It has been suggested that one integral facet of brain dynamics underlying conscious thought is the brain’s ability to convert seemingly noisy or chaotic signals into predictable oscillatory patterns.


...
Wikipedia

...